Antennal mechanosensory neurons mediate wing motor reflexes in flying Drosophila.
نویسندگان
چکیده
Although many behavioral studies have shown the importance of antennal mechanosensation in various aspects of insect flight control, the identities of the mechanosensory neurons responsible for these functions are still unknown. One candidate is the Johnston's organ (JO) neurons that are located in the second antennal segment and detect phasic and tonic rotations of the third antennal segment relative to the second segment. To investigate how different classes of JO neurons respond to different types of antennal movement during flight, we combined 2-photon calcium imaging with a machine vision system to simultaneously record JO neuron activity and the antennal movement from tethered flying fruit flies (Drosophila melanogaster). We found that most classes of JO neurons respond strongly to antennal oscillation at the wing beat frequency, but not to the tonic deflections of the antennae. To study how flies use input from the JO neurons during flight, we genetically ablated specific classes of JO neurons and examined their effect on the wing motion. Tethered flies flying in the dark require JO neurons to generate slow antiphasic oscillation of the left and right wing stroke amplitudes. However, JO neurons are not necessary for this antiphasic oscillation when visual feedback is available, indicating that there are multiple pathways for generating antiphasic movement of the wings. Collectively, our results are consistent with a model in which flying flies use JO neurons to detect increases in the wing-induced airflow and that JO neurons are involved in a response that decreases contralateral wing stoke amplitude.
منابع مشابه
The neural mechanisms of antennal positioning in flying moths.
In diverse insects, the forward positioning of the antenna is often among the first behavioral indicators of the onset of flight. This behavior may be important for the proper acquisition of the mechanosensory and olfactory inputs by the antennae during flight. Here, we describe the neural mechanisms of antennal positioning in hawk moths from behavioral, neuroanatomical and neurophysiological p...
متن کاملActive and passive antennal movements during visually guided steering in flying Drosophila.
Insects use feedback from a variety of sensory modalities, including mechanoreceptors on their antennae, to stabilize the direction and speed of flight. Like all arthropod appendages, antennae not only supply sensory information but may also be actively positioned by control muscles. However, how flying insects move their antennae during active turns and how such movements might influence steer...
متن کاملResponses of Drosophila giant descending neurons to visual and mechanical stimuli.
In Drosophila, the paired giant descending neurons (GDNs), also known as giant fibers, and the paired giant antennal mechanosensory descending neurons (GAMDNs), are supplied by visual and mechanosensory inputs. Both neurons have the largest cell bodies in the brain and both supply slender axons to the neck connective. The GDN axon thereafter widens to become the largest axon in the thoracic gan...
متن کاملIdentification of novel vibration- and deflection-sensitive neuronal subgroups in Johnston's organ of the fruit fly
The fruit fly Drosophila melanogaster responds behaviorally to sound, gravity, and wind. Johnston's organ (JO) at the antennal base serves as a sensory organ in the fruit fly to detect these mechanosensory stimuli. Among the five anatomically defined subgroups of sensory neurons in JO, subgroups A and B detect sound vibrations and subgroups C and E respond to static deflections, such as gravity...
متن کاملCentral Projections of Antennal and Labial Palp Sensory Neurons in the Migratory Armyworm Mythimna separata
The oriental armyworm, Mythimna separata (Walker), is a polyphagous, migratory pest relying on olfactory cues to find mates, locate nectar, and guide long-distance flight behavior. In the present study, a combination of neuroanatomical techniques were utilized on this species, including backfills, confocal microscopy, and three-dimensional reconstructions, to trace the central projections of se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 20 شماره
صفحات -
تاریخ انتشار 2015